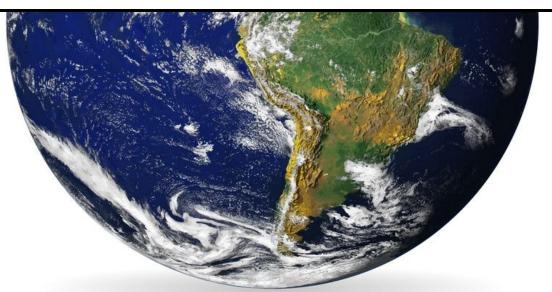
Computer Vision for Conservation

Sara Beery EE/CNS/CS 148 - May 26, 2020

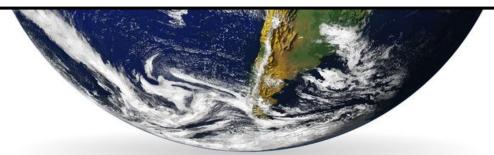
Big goal: monitoring biodiversity, globally and in real time.

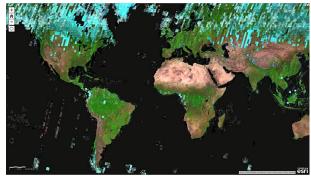


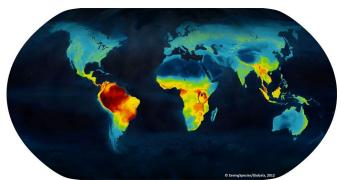
Big goal: monitoring biodiversity, globally and in real time.

The second se

How can we contribute?







In-situ Monitoring

Citizen Science

In-situ Monitoring

Remote Sensing

Citizen Science

www.inaturalist.org

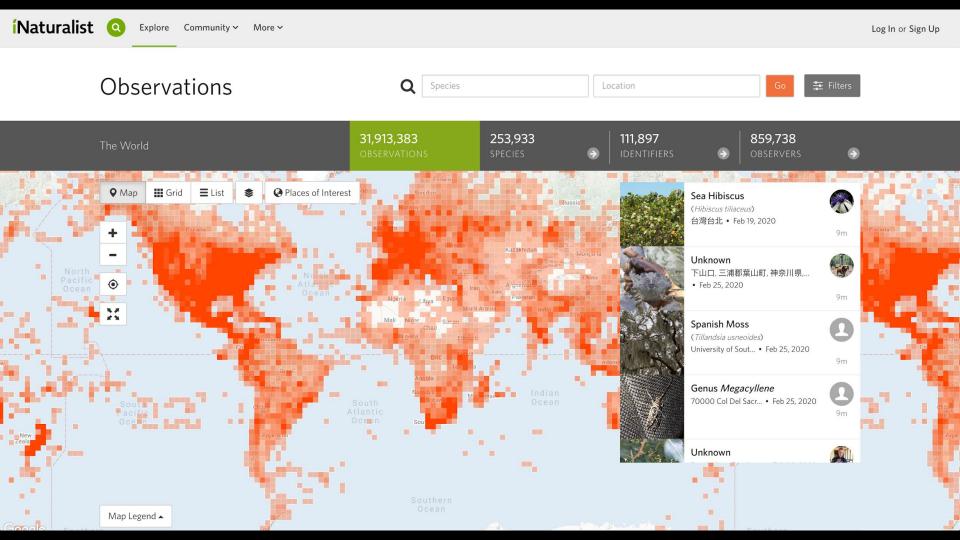
California Academy of SCIENCES GEOGRAPHIC iNaturalist is a joint initiative of the California Academy of Sciences and the National Geographic Society.

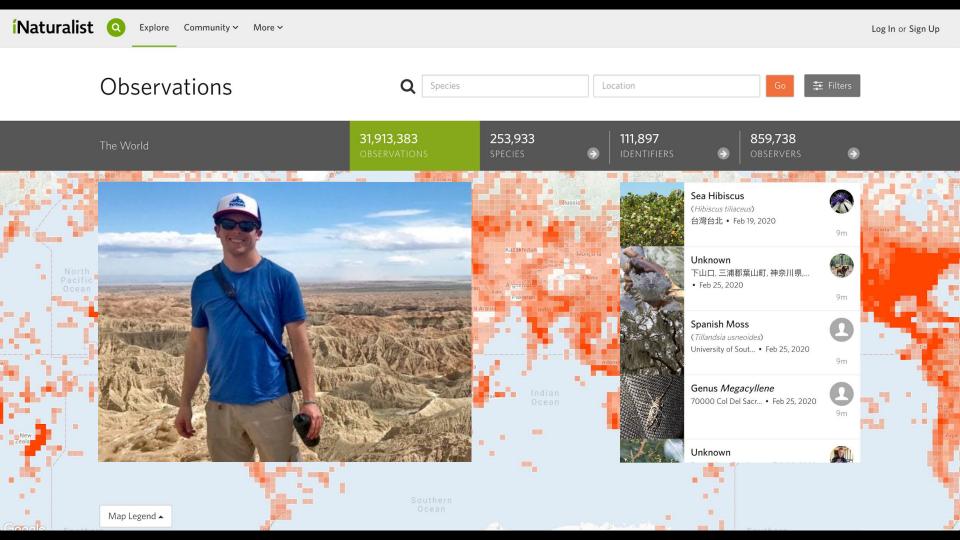
How It Works

Record your observations

Share with fellow naturalists

Discuss your findings





seek by iNaturalist GETITON Google Play Download on the App Store ACHIEVEMENTS SURVEYOR SPECIES BADGES California Poppy Eschscholzia californica Eschscholzia californica (California p Californian poppy, golden poppy, Ca sunlight, cup of gold) is a species of f plant in the Papaveraceae family, nat United States and Mexico. It is an or plant and it is used CAMERA PHOTO

iNaturalist 2017

5,089 classes Classification

iNaturalist 2018

8,142 classes Taxonomy

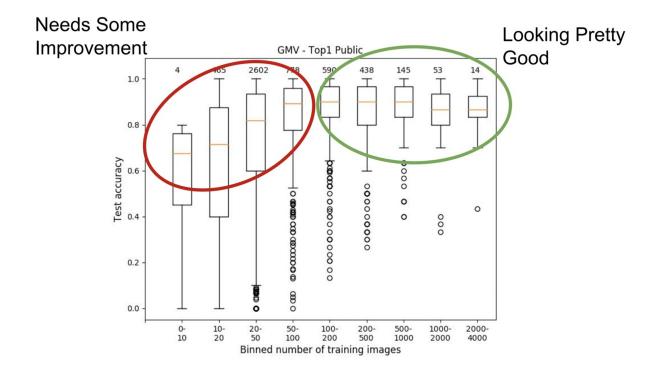
iNaturalist 2019

1,100 classes Similar Species

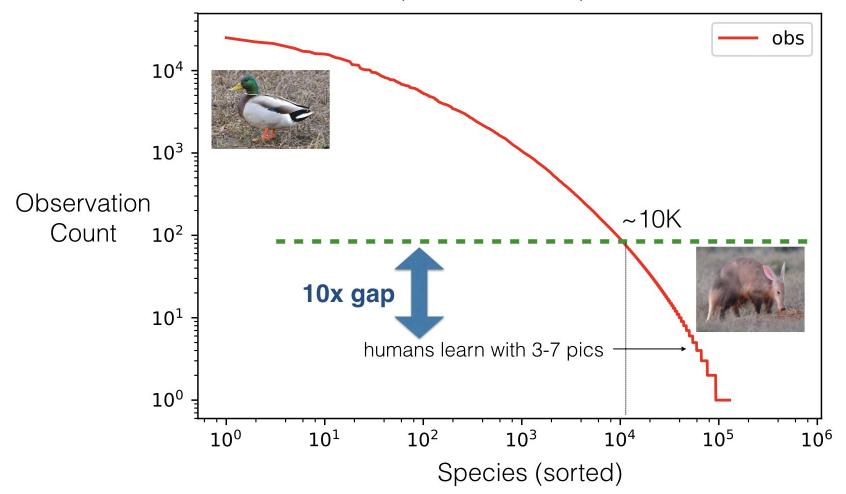
The iNaturalist Species Classification and Detection Dataset CVPR 2018 Van Horn, Mac Aodha, Song, Cui, Sun, Shepard, Adam, Perona, Belongie

iNaturalist 2018 Challenge Winner

Classification accuracy across 8K species



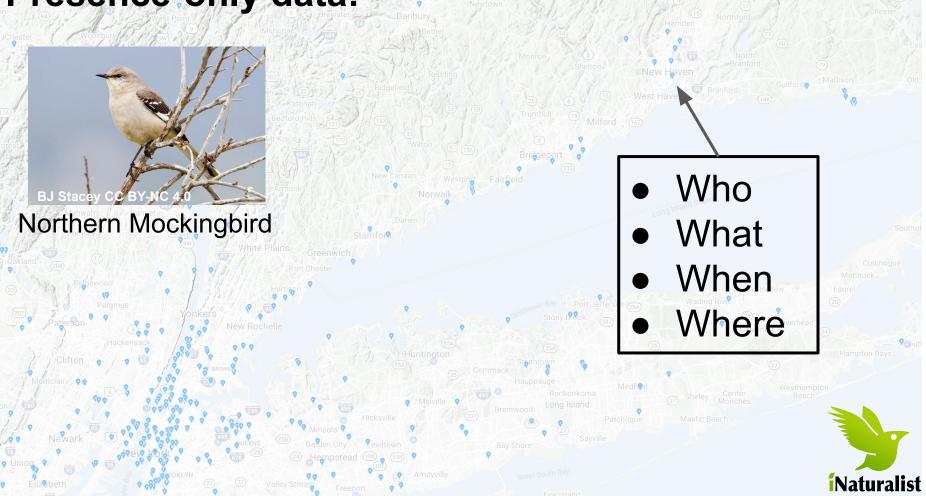
Observations per iNaturalist Species: 16 M total



Can we use information such as where, when, and who captured an image to help determine its class?

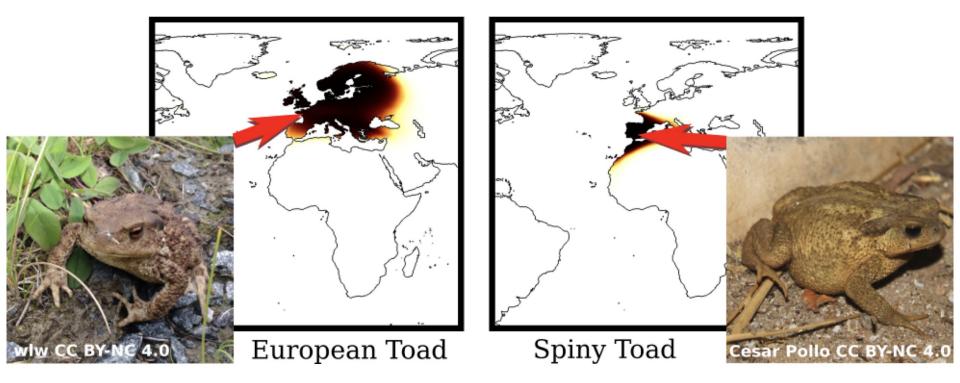
Presence-Only Geographical Priors for Fine-Grained Image Classification ICCV 2019 Mac Aodha, Cole, Perona

Presence-only data:



Which class *y* is in image *I*?

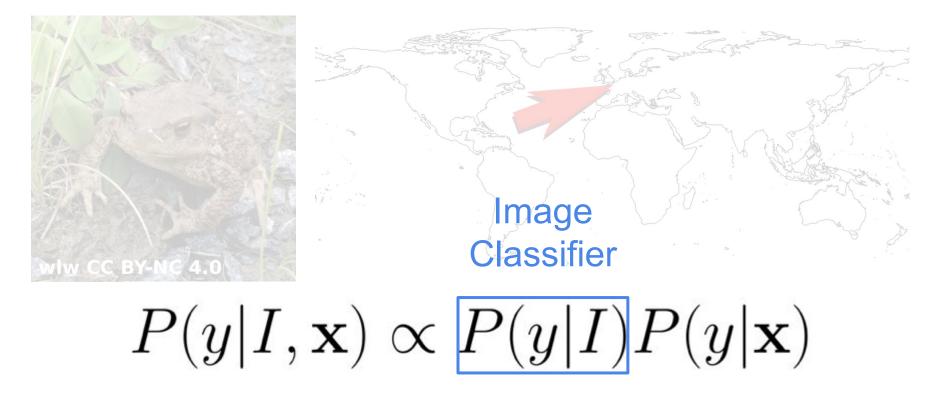
P(y|I)



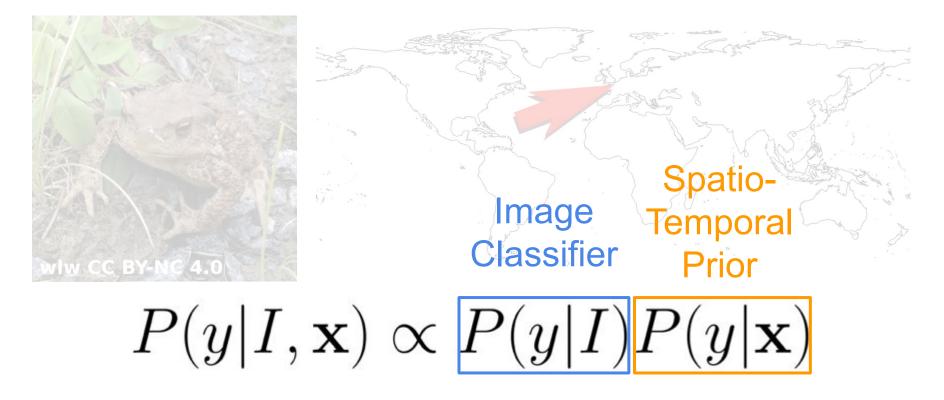
Which class y is in image I at location x?

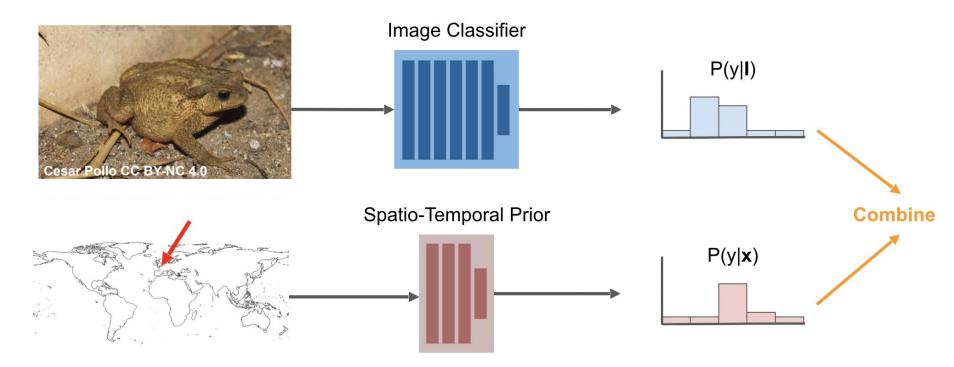
$P(y|I,\mathbf{x}) \propto P(y|I)P(y|\mathbf{x})$

Which class y is in image I at location x?



Which class y is in image I at location x?



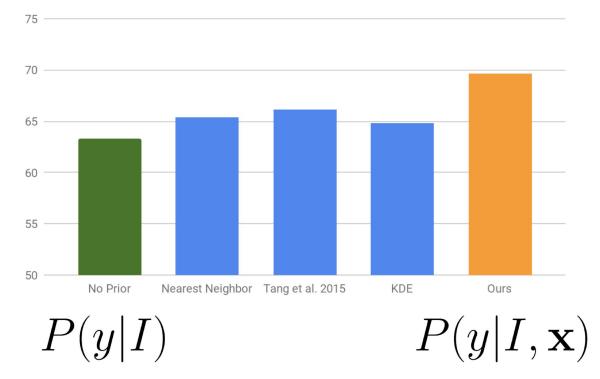


x = (longitude, latitude, day)

Modular and efficient

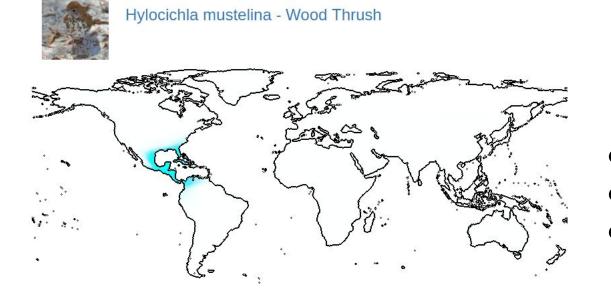
Top-1 Classification Results

iNat2017 - val



Paper also has results on iNat 2018, NABirds, BirdSnap, YFCC

http://www.vision.caltech.edu/~macaodha/projects/geopriors/index.html



- Trained ModelsDemo
- Code

Jan

Type the name of a particular species or click "random".

Search ...

search random

About

In-situ Monitoring

Citizen Science

Camera traps

- 1,000s of organizations
- 10,000s of projects
- 1,000,000s of camera traps
- 100,000,000s of images

*estimates by Eric Fegraus, Conservation International 25

Camera traps

- 1,000s of organizations
- 10,000s of projects
- 1,000,000s of camera traps
- 100,000,000s of images

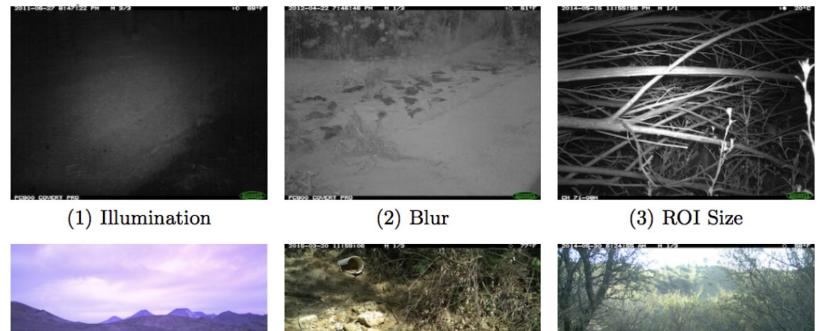
For example: Idaho Department of Fish and Game alone has 5 years of unprocessed, unlabeled data, around 5 million images

*estimates by Eric Fegraus, Conservation International ²⁶

Smithsonian Institution

Google

Camera trap data is challenging

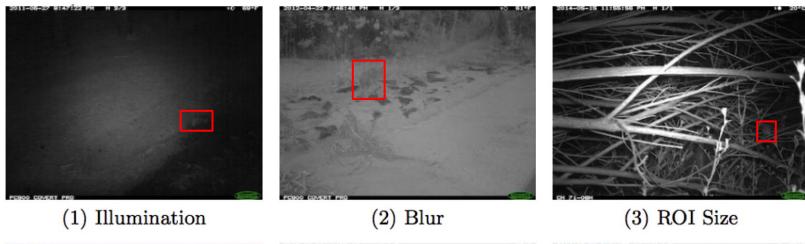


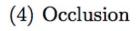
(4) Occlusion

(5) Camouflage

(6) Perspective

All these images have an animal in them

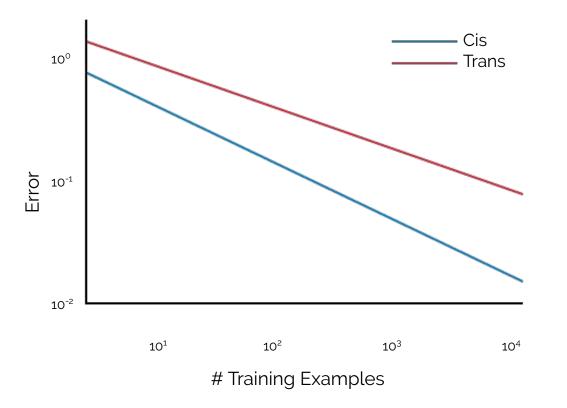




(5) Camouflage

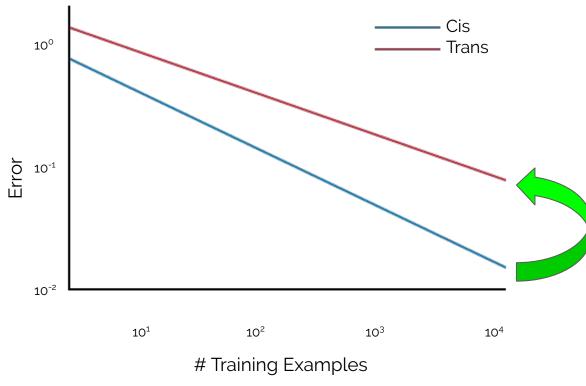
(6) Perspective

SOA models don't generalize



Recognition in Terra Incognita, Beery et al., ECCV 2018

Big increase in error when testing at unseen camera locations



Recognition in Terra Incognita, Beery et al., ECCV 2018

Rare classes are still hard



Recognition in Terra Incognita, Beery et al., ECCV 2018

Class-agnostic detectors generalize best

MegaDetector

Microsoft AI for Earth

Sorted 4.8 million images in ~2.75 days

This would have taken 10 people working full-time 40 weeks to complete

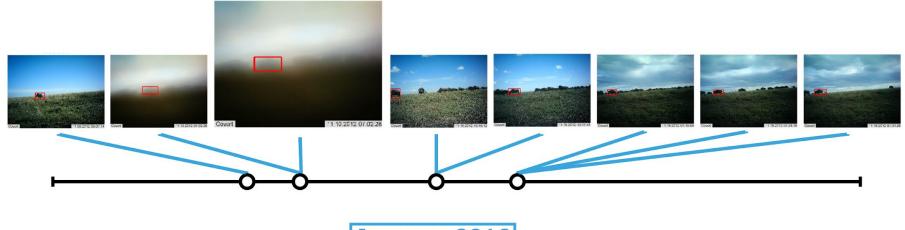
How do experts label images like this?

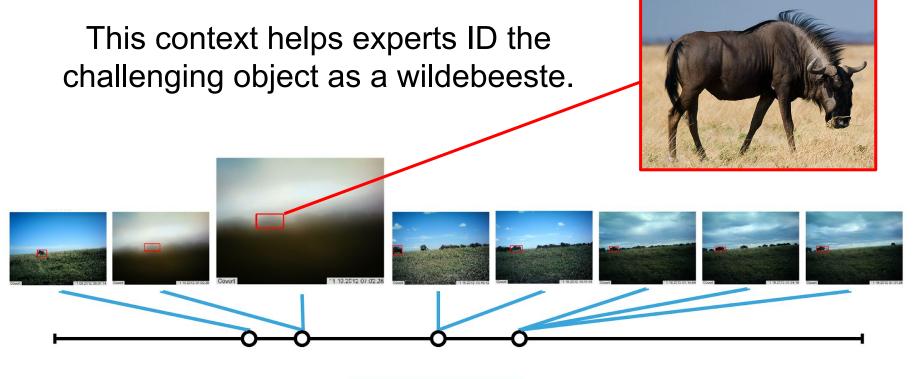
Let's focus on one potential object.

From this image alone, it's impossible to tell if this is foreground or background, let alone what class it is.

Humans look for context in other images from the same camera location.

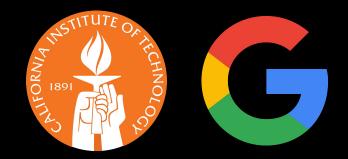
They often look at many images, spread across a large time horizon.





Can we use temporal context over long time horizons, to improve detection and categorization for static cameras?

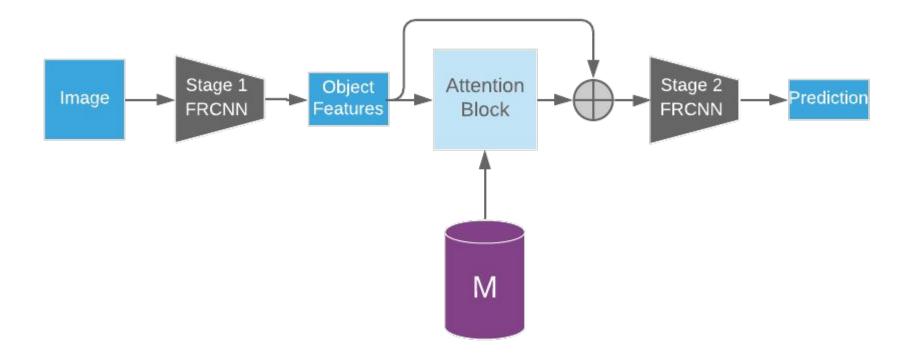
Context R-CNN: Long Term Temporal Context for Per-Camera Object Detection CVPR 2020 Beery, Wu, Rathod, Votel, Huang



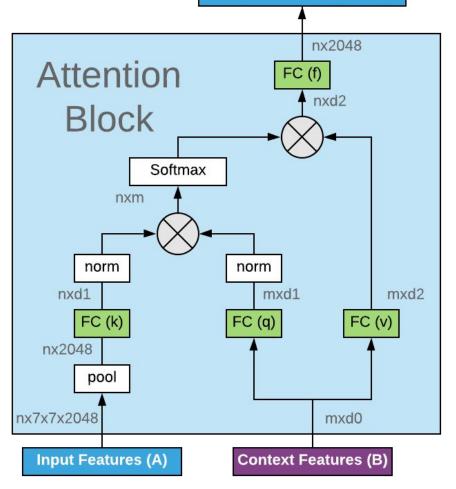
Contextual memory strategy

- Extract features offline
- Reduce feature size
- Curate features
- Maintain spatiotemporal information

Use attention to incorporate context

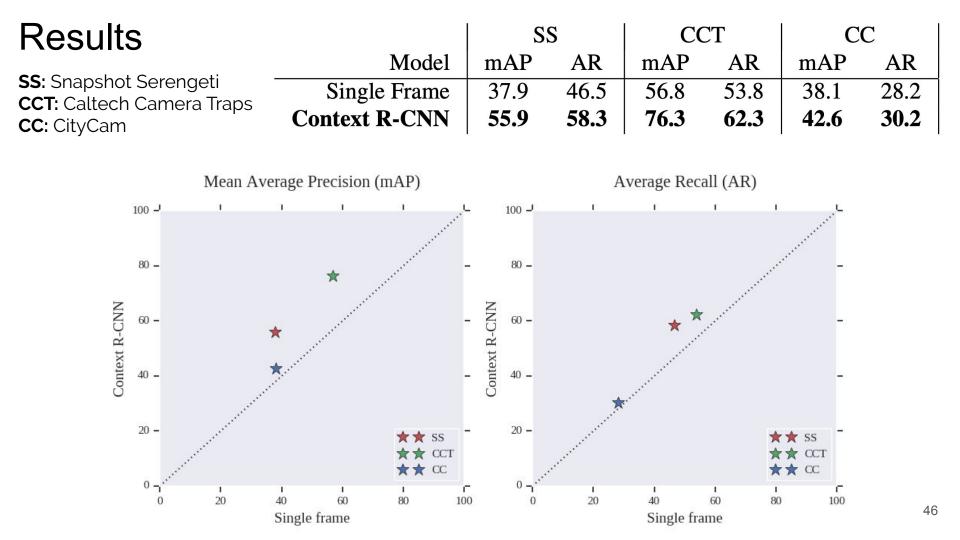


Context is incorporated based on relevance

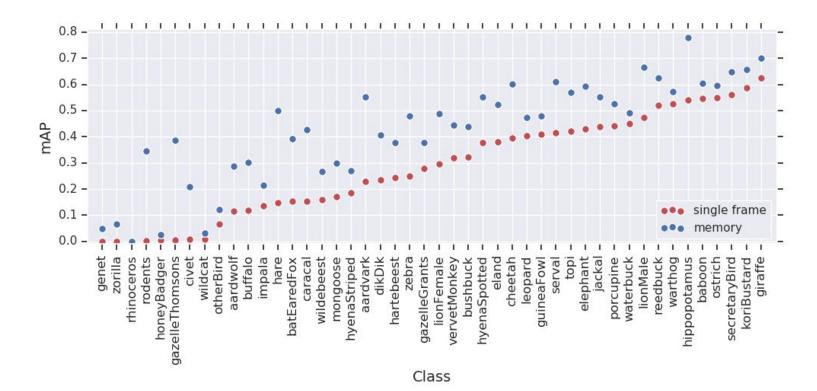


Datasets

- Snapshot Serengeti (SS): 225 cameras, 3.4M images, 48 classes, Eastern African game preserve
- Caltech Camera Traps (CCT): 140 cameras, 243K images, 18 classes, American Southwestern urban wildlife
- CityCam (CC): 17 cameras, 60K images, 10 vehicle classes, traffic cameras from NYC



mAP improves for all classes (shown on SS*)



*See Supplementary Material for similar results on other datasets

47

Improves predominantly on challenging cases

(a) Object moving out of frame.

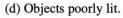
(b) Object highly occluded.

DLCcovert.com

10-10-2010 12:41:54 DLCcovert.com

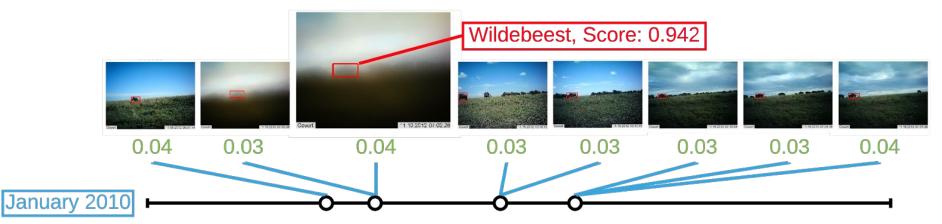
(c) Object far from camera.

10-30-2010 20:41:18



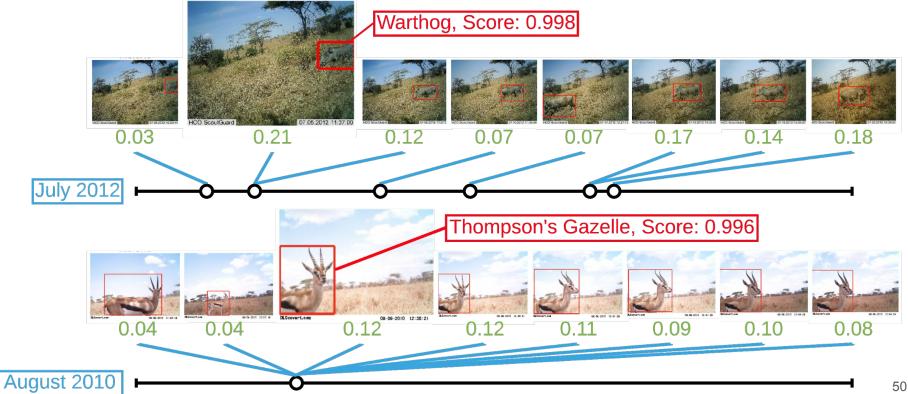
(e) Background distractor.

Correctly labels objects in challenging images



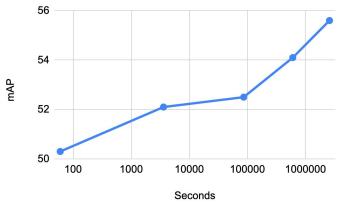
Able to categorize wildebeest through severe fog. The green scores are the corresponding contextual attention weights for each boxed feature.

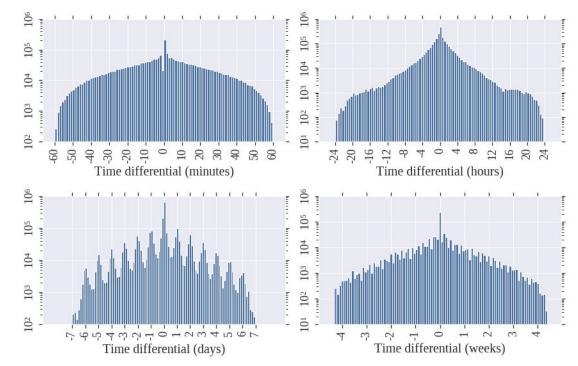
Attention is temporally adaptive to relevance



Bigger (memory) is better

SS	mAP	AR
One minute	50.3	51.4
One hour	52.1	52.5
One day	52.5	52.9
One week	54.1	53.2
One month	55.6	57.5



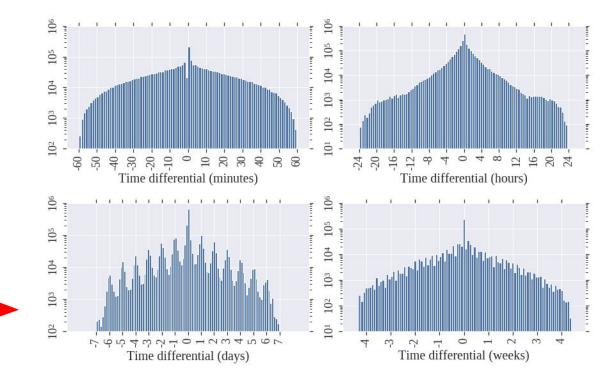


Histogram of time differentials from the highest-scoring object in the keyframe to the attended frames for varied time horizons.

Bigger (memory) is better

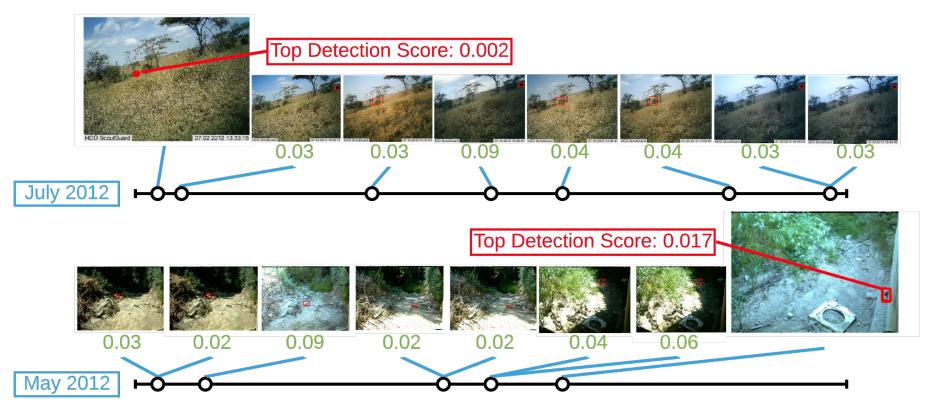
SS	mAP	AR
One minute	50.3	51.4
One hour	52.1	52.5
One day	52.5	52.9
One week	54.1	53.2
One month	55.6	57.5

day/night periodicity!

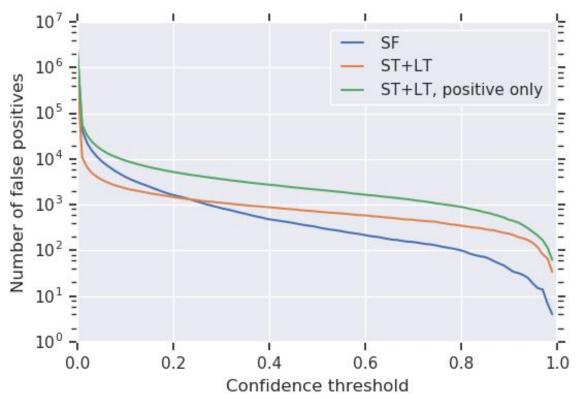


Histogram of time differentials from the highest-scoring object in the keyframe to the attended frames for varied time horizons.

Background classes are learned without supervision



Adding features from empty images reduces false positives



Of the 100 most confident "false positives" returned by our ST+LT model, 97/100 were in fact mis-annotated.

hartebeest: 0.987557649612

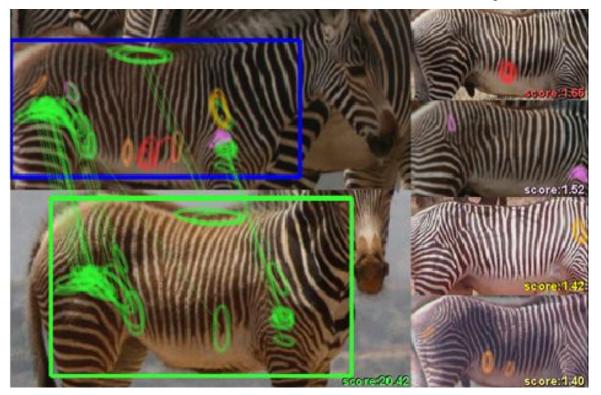
gazelleThomsons: 0.963184177876

07-23-2010 19:05:33

10-23-2010 19:48:41

Can we leverage camera trap data to monitor populations via re-ID?

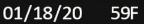
The Great Grevy's Rally: an animal re-ID success story



Camera Trap Data Collection at GGR 2020

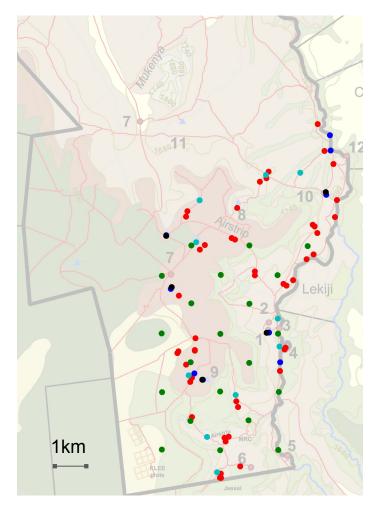
Mpala Research Center in Laikipia
100 camera traps with 3 spatial sampling strategies
We want to compare capture-recapture using the camera trap data and using the citizen science data

19:51



Placement Strategies

- 12 "magnet" cameras
- 47 roadway cameras
- 10 random roadway cameras
- 21 random grid cameras
- 5 paired timelapse/video cameras at magnet sites



Good news! Some images get matched right away.

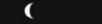


We have matches to nighttime data!

We even got a match to this image!

10:41

01/20/20



77F

10:41

01/20/20 77F

Pretty cool

But we've seen a lot of zebras that would currently be unidentifiable....

01/18/20

73F

19:52

Extend context-based approach to re-ID?

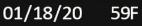
53F

01/19/20

06:23

Open questions

Species modeling **Multiple spatial sampling strategies** 0 **Combining data streams** o iNaturalist/eBird Satellite imagery Aerial drone imagery 0 Social media data 0



Biodiversity-focused competitions

Global camera traps (WCS) + RS Data Release: March

https://www.kaggle.com/c/iwildcam-2020-fgvc7

2M Species Observations + RS + LC + Covariates Data Release: March

https://www.imageclef.org/GeoLifeCLEF2020

Remote Sensing In-situ Citizen Monitoring Science

Big challenges Long-tailed distribution Sparse, low-quality data Global generalization

Interested? Join our slack channel by emailing aiforconservation@gmail.com

