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Big goal: monitoring biodiversity,

globally and in real time.
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Landsat 8 Surface Reflectance Normalized Difference Vegetation Index (NDVI)
Path 44 Row 33 - Acquired 7 Oct 2018 Landsat 8 Path 44 Row 33 - Acquired 7 Oct 2018
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iNaturalist

www.inaturalist.org

iNaturalist is a joint initiative of the
California Academy of Sciences and the
National Geographic Society.
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Record your observations

How It Works
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Discuss your findings
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seek @

by iNaturalist

GETITON # Download on the
{ » Google Play ’ ‘ @& App Store

ACHIEVEMENTS

D
SURVEYOR

Observe 50 species to

get to the next level!

‘ YOUR LEVEL

California Poppy

Eschscholzia californica




iNaturalist 2017 |Naturallst 2018 iNaturalist 2019

5,089 classes 8,142 classes 1,100 classes
Classification Taxonomy Similar Species

The iNaturalist Species Classification and Detection Dataset
CVPR 2018
Van Horn, Mac Aodha, Song, Cui, Sun, Shepard, Adam, Perona, Belongie



INaturalist 2018 Challenge Winner

Classification accuracy across 8K species

INeeds Somet | Looking Pretty
mprovemen GMV - Topl Public """ Good

4 2602 438 145 53 m
1.0 1 l ;
>
® 0.6 o
5 o
3 o o
g ] o o o
2 g o ° o &
2 0.4 g o o o
g o ) o
o o o
o o
o o
0.2 8
o
] o
0.0 o o
0 10- 20- 50- 100-  200-  500-  1000- 2000-
10 20 50 100 200 500 1000 2000 4000

Binned number of training images



Observation
Count

Observations per iNaturalist Species: 16 M total
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Can we use information such as where,
when, and who captured an image to
help determine its class?

Presence-Only Geographical Priors for Fine-Grained Image Classification
ICCV 2019
Mac Aodha, Cole, Perona




Presence-only data:
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Which class y is in image I?
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Which class y is in image I at location x?

P(y|l,x) o< P(y|I)P(y|x)



Which class y is in image I at location x?

P(y|l,x)

Image
Classifier

P(y|1)




Which class y is in image I at location x?

P(y|l,x)

Image
Classifier

P(y|1)




Image Classifier

Spatio-Temporal Prior

Modular and efficient

x = (longitude, latitude, day

P(yll)
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Combine
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Top-1 Classification Results

iNat2017 - val
75
70
65
60
55
50
No Prior Nearest Neighbor Tang et al. 2015 Ours

P(y|I) P(y I,x)

Paper also has results on iNat 2018, NABirds, BirdSnap, YFCC




http://www.vision.caltech.edu/~macaodha/projects/geopriors/index.html

T
3 Hylocichla mustelina - Wood Thrush

e Trained Models
e Demo
e (Code

Jan

Type the name of a particular species or click "random".

About
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Camera traps

1,000s of organizations
10,000s of projects
1,000,000s of camera traps
100,000,000s of images

“estimates by Eric Fegraus, Conservation International

25



Camera traps

1,000s of organizations
10,000s of projects
1,000,000s of camera traps

100,000,000s of images AR
For example: Idaho Department of Fich and Ga.me a/ohe Aac 5

years of unprocesced, unlabeled data, arsvnd 5 million images

“estimates by Eric Fegraus, Conservation International 26
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Camera trap data is challenging

(1) Illumination

(4) Occlusion



All these images have an animal in them

(1) Illumination

(4) Occlusion (5) Camouflage (6) Perspective



SOA models don’t generalize
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Recognition in Terra Incognita, Beery et al., ECCV 2018



Big increase in error when testing at
unseen camera locations

Cis
Trans

10°
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Recognition in Terra Incognita, Beery et al., ECCV 2018



Rare classes are still hard

Cis
Trans
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Recognition in Terra Incognita, Beery et al.,, ECCV 2018



Class-agnostic
detectors
generalize best

MegaDetector

Microsoft Al for Earth

://qithub.com/microsoft/CameraTraps/blob/master/me adetector.%?d


https://github.com/microsoft/CameraTraps/blob/master/megadetector.md
https://docs.google.com/file/d/1aR_MDlGbCmAR0pO-H9jADagLuAIUSryH/preview

Sorted 4.8 million images in ~2.75 days

This would have taken 10 people
working full-time 40 weeks to complete

34



How do experts label images like this?

——

11.10.2012 Q70228



Let’s focus on one potential object.

r——

11.10.2012 Q70228



From this image alone, it's impossible to tell if this is
foreground or background, let alone what class it is.

11.10.2012 O7:.02:28



Humans look for context in other images from the same
camera location.

‘1102012 07.0228 oo



They often look at many images, spread across a large time
horizon.

January 2010




This context helps experts ID the
challenging object as a wildebeeste.

January 2010




Can we use temporal context over long
time horizons, to improve detection and
categorization for static cameras”?

G

Context R-CNN:

Long Term Temporal Context for Per-Camera Object Detection
CVPR 2020

Beery, Wu, Rathod, Votel, Huang




Covert

Contextual memory strategy

Extract features offline

Reduce feature size

Curate features

Maintain spatiotemporal information

09.27.2011 11:04:18

09.28.2011 14:37:56 Covert

09.29.2011 12:29:21
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Use attention to incorporate context

Object Attention
Features Block

|

&

Stage 2
FRCNN

D rediction
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Context is
Incorporated
based on
relevance

Output Features (Fcontext)
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Attention FC
nxd2
Block é
I—»
Softmax

,—-b

norm
nxdl
FC (k)
nx2048

pool

A
NX7X7x2048

o

norm
mxd1l mxd2
FC () FC (v)
mxd0

Context Features (B)
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Datasets

e Snapshot Serengeti (SS): 225
cameras, 3.4M images, 48 classes,
Eastern African game preserve e ‘ =

e Caltech Camera Traps (CCT): 140 == I i
cameras, 243K images, 18 classes, [l =
American Southwestern urban
wildlife

e CityCam (CC): 17 cameras, 60K
images, 10 vehicle classes, traffic
cameras from NYC




Results SS CCT
cs. o ot e Model | mAP AR | mAP AR | mAP AR
: Shapshot Serengeti -
CCT: Caltech Camera Traps Single Frame | 379 465 | 56.8 538 | 38.1 28.2
CC: CityCam Context R-CNN | 559 583 | 763 623 | 426 302
Mean Average Precision (mAP) Average Recall (AR)
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Single frame




e®e single frame
e®e memory
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Class

"See Supplementary Material for similar results on other datasets



Improves predominantly on challenging cases

Facing South 05103/’!\% 06:03:16 PM

04.03.2011 18:45:08 HCO ScoutGuard

(b) Object highly occluded.

10-30-2010 20:41:18 DLGcovert.com

(c) Object far from camera. (d) Objects poorly lit.

10-10-2010 12:41:54 DLOcovert.com 10-10-2010 12:41:54

/2016 11:58:20/4M Fating South M02/23/2016 11:58:20 AM
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(e) Background distractor.

04.03.2011 18:45:08

10-30-2010 20:41:18
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Correctly labels objects in challenging images

Wildebeest, Score: 0.942

January 2010} »

Able to categorize wildebeest through severe fog. The green scores are the
corresponding contextual attention weights for each boxed feature.



Attention is temporally adaptive to relevance

Warthog, Score: 0.998

07.052012 11:37.00  meose

July 2012 W/ %

Thompson's Gazelle, Score: 0.996
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mAP

Bigger (memory) is better

SS | mAP AR

One minute | 50.3 514

One hour | 52.1 52.5

Oneday | 52.5 529

One week | 54.1 53.2

One month | 55.6 57.5
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Bigger (memory) is better

SS | mAP AR %
One minute | 50.3 514 5,
One hour | 52.1 52.5 i - 2,
o (25 55+ (D - RN
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Histogram of time differentials from the highest-scoring object in
the keyframe to the attended frames for varied time horizons.



Background classes are learned without supervision

Top Detection Score: 0.002

July 2012




Adding features from empty images reduces false positives

Of the 100 most confident “false

107 :I | | | 1 l:
z —&F = positives” returned by our ST+LT
106 = — ST+LT _ model, 97/100 were in fact
§ f —— ST+LT, positive only E mis-annotated.
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Can we leverage
camera trap data to

monitor populations via
re-ID?



The Great Grevy's Rally: e
an animal re-ID success story GG
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Placement Strategies

12 “magnet” cameras

47 roadway cameras

21 random grid cameras

5 paired timelapse/video
cameras at magnet sites

1km



Good news! Some images get matched right away.




We have matches to nighttime datal
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Pretty cool
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But we've seen a lot of zebras that would currently
be unidentifiable....
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Extend context-based approach to re-ID?

» STEALTH CAM’ 06:23 01/19/20 53F ¢
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Biodiversity-focused competitions

|W|]dCam GeoLifeCLEF 2020

Location-Based

Species
f Recommendation
Global camera traps (WCS) + RS 2M Species Observations + RS + LC + Covariates
Data Release: March Data Release: March

https://www.kaggle.com/c/iwildcam-2020-fgvc7 https://www.imageclef.org/GeoLifeCLEF2020


https://www.kaggle.com/c/iwildcam-2020-fgvc7
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Big challenges

e Long-tailed distribution
e Sparse, low-quality data
e Global generalization

Interested? Join our slack channel by

' 3
emailing aiforconservation@gmail.com ?\ | |
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